HiSilicon Kirin 650 vs Apple A18 vs HiSilicon Kirin 930
HiSilicon Kirin 650
► remove from comparisonDer HiSilicon Kirin 650 ist ein ARM-basierter Octa-Core-SoC für Smartphones und Tablets der Mittelklasse, der Anfang/Mitte 2016 vorgestellt wurde. Neben acht Cortex-A53-Kernen (2 Cluster, max. 1,7/2,0 GHz) integriert der Chip auch eine Mali-T830 MP2 Grafikeinheit, einen 64-Bit LPDDR3-Speichercontroller sowie ein Dual-SIM LTE Cat. 6 Modem.
Prozessor
Der Cortex-A53 kann als Nachfolger des beliebten Cortex-A7-Designs betrachtet werden. Neben der von 32 auf 64 Bit verbreiterten Prozessorarchitektur (ARMv8-ISA), die unter anderem die Adressierung von mehr als 4 GB Arbeitsspeicher erlaubt, wurden auch weitere Details wie die Sprungvorhersage optimiert. Insgesamt steigt die Pro-MHz-Leistung dadurch deutlich und liegt sogar etwas oberhalb eines Cortex-A9-Kernes. Die acht Kerne des Kirin 650 teilen sich in zwei Quad-Core-Cluster mit einem Maximaltakt von 1,7 bzw. 2,0 GHz auf.
Insgesamt ist der Prozessor in etwa mit dem älteren Kirin 930 vergleichbar und ausreichend schnell, um sämtliche alltäglichen Aufgaben wie Browsing problemlos zu meistern. Cortex-A57- oder Cortex-A72-basierte High-End-SoCs erreichen allerdings noch eine merklich höhere Performance.
Grafiklösung
Die integrierte Mali-T830 MP2 (Taktrate 600 MHz, 40,8 GFLOPS) siedelt sich in etwa auf dem Level der Qualcomm Adreno 405 oder knapp darüber an. Für einen SoC der mittleren Preisklasse ist dies ein durchschnittliches Ergebnis. Android-Spiele des Jahres 2015/2016 werden bei mittlerer Auflösung zumeist flüssig dargestellt.
Features
Der Kirin 650 unterstützt Dual-SIM sowie eine Reihe verschiedener Funkstandards wie GSM, WCDMA, UMTS, HSPA+ und LTE Cat. 6 (max. 300 Mbit/s).
Leistungsaufnahme
Der in einem 16-Nanometer-FinFET-Prozess gefertigte SoC sollte trotz seiner 8 Kerne eine relativ niedrige Leistungsaufnahme aufweisen und kann so auch in kompakten Smartphones eingesetzt werden.
Apple A18
► remove from comparisonDer Apple A18 ist ein moderner Smartphone-SoC welcher 2024 im iPhone 16 und 16 Plus vorgestellt wurde. Der Prozessorteil basiert aus 2 Performance-Kernen mit bis zu 4 GHz und 4 Effizienzkerne. Weiters integriert der SoC 8 GB, eine 35 TOP NPU für AI-Beschleunigung und eine neue 5-Kern GPU.
Die Performance ist in unseren Benchmarks knapp oberhalb des alten Apple A17 Pro SoCs (iPhone 15 Pro Serie). Wie üblich glänzt der Prozessorteil mit einer hervorragenden Single-Thread-Leistung, welcher deutlich oberhalb der Konkurrenz für Android Smartphones wie dem Snapdragon 8 Gen 3 oder MediaTek Dimensity 9300. In Multi-Thread-Benchmarks verringert sich der Vorsprung zur Konkurrenz deutlich, trotzdem kann hier der aktuelle Spitzenreiter Dimensity 9300 noch knapp geschlagen werden im Geekbench 6.2. Nur der Apple 18 Pro ist durch die größeren Caches noch etwas schneller.
Der Prozessor wird im modernen 3nm Prozess bei TSMC hergestellt (N3E) und unterstützt das aktuelle ARMv9.2-A Instruktions-Set.
HiSilicon Kirin 930
► remove from comparisonDer HiSilicon Kirin 930 ist ein ARM-basierter Octa-Core-SoC der Mittelklasse für Smartphones und Tablets, der im Frühjahr 2015 zusammen mit dem Huawei MediaPad x2 vorgestellt wurde. Neben den 8 CPU-Kernen integriert der Chip auch eine Mali-T628 MP4 Grafikeinheit, einen Dual-Channel LPDDR3-1600-Speichercontroller sowie ein LTE Cat. 6 Modem.
Prozessor
HiSilicon verzichtet beim Kirin 930 auf den Einsatz der besonders schnellen, aber auch extrem energiehungrigen Cortex-A57-Kerne und integriert stattdessen zwei Quad-Core-Cluster aus Cortex-A53-Kernen im big.LITTLE-Verbund. Während der eine Cluster auf einen niedrigeren Arbeitspunkt optimiert wurde und mit maximal 1,5 GHz taktet, erreicht der andere Cluster bis zu 2,0 GHz. Um derart hohe Frequenzen erzielen zu können, musste der Hersteller das Design leicht modifizieren und spricht im Falle des schnelleren Clusters von sogenannten Cortex-A53e-Kernen. Die Pro-MHz-Leistung dürfte von diesen Änderungen weitgehend unbeeinflusst bleiben.
Da der Cortex-A53 bei gleichem Takt rund 40 Prozent langsamer als der Cortex-A57 rechnet, kann der Kirin 930 insbesondere bei Auslastung weniger Threads (z.B. Browsing) nicht mit High-End-SoCs wie dem Snapdragon 810 konkurrieren. Selbst ältere Cortex-A15-Modelle wie die Vorgänger Kirin 920 und Kirin 925 bieten in vielen Situationen deutlich höhere Leistungsreserven. Dennoch bewältigt der Chip sämtliche Alltagsaufgaben sowie viele anspruchsvolle Android-Apps in zufriedenstellender Geschwindigkeit.
Grafikeinheit
Die ebenfalls von ARM lizenzierte Grafikeinheit hört auf die Bezeichnung Mali-T628. Im Kirin 930 kommt dabei die MP4-Version mit insgesamt 4 Clustern zum Einsatz (Taktrate vermutlich 600 MHz). Die Mali-T628 beherrscht unter anderem OpenGL ES 3.0, OpenCL 1.1 sowie DirectX 11 und bietet eine Grafikleistung, die etwa im Bereich der Adreno 320 (Snapdragon 600) oder Adreno 405 (Snapdragon 610) liegt. Damit zählt die GPU lediglich zur Mittelklasse mobiler Grafiklösungen des Jahres 2014/2015, kann aber die meisten aktuellen Android-Spiele in hohen Auflösungen flüssig darstellen.
Leistungsaufnahme
Der Kirin 930 wird die sein Vorgänger Kirin 925 in 28-Nanometer-Technik gefertigt. Dank der relativ sparsamen Cortex-A53-Kerne sollte der Chip keine übermäßig hohe Leistungsaufnahme aufweisen und so relativ gute Akkulaufzeiten ermöglichen.
Model | HiSilicon Kirin 650 | Apple A18 | HiSilicon Kirin 930 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Series | Apple Apple A-Series | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Codename | Cortex-A53 | Cortex-A53 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Serie: Cortex-A53 |
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Clock | 2000 MHz | <=3800 MHz | 2000 MHz | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cores / Threads | 8 / 8 | 6 / 6 2 x Apple A18 P-Core 4 x 4.0 GHz Apple A18 E-Core | 8 / 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Technology | 16 nm | 3 nm | 28 nm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Features | ARMv8-ISA, Mali-T830 MP2, Dual SIM LTE (Cat. 6), LPDDR3 Memory Controller | 16-core Neural Engine, USB 2.0 (480 Mbps) | ARM Mali-T628 MP4 GPU, 4x Cortex-A53e (2.0 GHz) + 4x Cortex-A53 (1.5 GHz, big.LITTLE), LTE Cat. 6, 2x 32 Bit LPDDR3-1600 Memory Controller | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
iGPU | ARM Mali-T830 MP2 (900 MHz) | Apple A18 GPU | ARM Mali-T628 MP4 ( - 600 MHz) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Architecture | ARM | ARM | ARM | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Announced | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
L2 Cache | 4 MB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TDP Turbo PL2 | 9 Watt |