NVIDIA GeForce GTX 470M SLI vs NVIDIA GeForce GTX 480M SLI
NVIDIA GeForce GTX 470M SLI
► remove from comparisonDie NVIDIA GeForce GTX 470M SLI ist eine High-End Grafiklösung für Notebooks bestehend aus zwei einzelnen GeForce GTX 470M Grafikkarten. Die beiden Grafikkarten werden durch eine SLI Bridge verbunden und rendern normalerweise abwechselnd ein Bild. Dadurch kann es auch zu Microruckler kommen (ungleichmäßige Abstände zwischen zwei Bildern führen zu spürbaren Rucklern trotz flüssiger fps Raten von etwa 30 fps). Da in in den Speicherchips jeder Grafikkarte der selbe Inhalt gespeichert werden muss, kann man die Speichermenge nicht addieren. 2x1.5 GB gelten dadurch wie 1.5 GB für Spiele.
Die GTX 470M basiert auf dem GF104 Kern, der einen Ableger der Fermi Architektur darstellt und daher DirectX 11 und OpenGL 4.0 unterstützt. Bei der GTX 470M sind nur 288 der 384 Kerne freigeschalten. Die GTX 480M basiert auf dem GF100 und bietet 352 Shader Kerne und einen 256 Bit Speicherbus, ist jedoch aufgrund der geringeren Taktung nicht schneller.
GF104 Architektur
Der GF104 Kern der GTX 470M basiert auf dem GF100 (GeForce GTX 480M) und bietet maximal 384 Shader sowie einen 256 Bit Speicherbus für GDDR5. Dadurch ist die Architektur nicht mehr mit dem GT215 (GeForce GTS 350M) oder G92b (GeForce GTX 285M) verwandt. Im Unterschied zum GF100 wurden die kleineren GF104, GF106 und GF108 Kerne jedoch nicht nur abgespeckt, sondern deutlich abgeändert. Die Chips sind auf den Consumer Markt orientiert (GF100 für professionelle Anwendungen) und besitzen mehr Shader (3x16 statt 2x16), Textureinheiten (8 statt 4) und SFUs (Special-Funciton-Units) pro Streaming-Multiprocessors (SM). Da sich jedoch immer noch nur zwei Warp Scheduler um die drei Shader Blöcke kümmern, stieg Nvidia auf eine Superskalare Architektur um. Dadurch kann man die Shader theoretisch besser auslasten und die Performance pro Rechenkern steigern. Im Worst-Case kann die Performance allerdings auch schlechter als bei der GF100 Architektur (und den Vorgängern) sein. Der für professionelle Anwendungen wichtige ECC Speicherschutz wurde komplett weggelassen und die FP64 Hardware beschnitten (nur noch 1/3 der Shader sind FP64 fähig und damit 1/12 der FP32 Leistung). Durch die Beschneidungen im Vergleich zum GF100 stieg die Größe eines SM lediglich um 25% trotz der höheren Shaderanzahl. Aufgrund der unterschiedlichen Shaderarchitekturen und der höheren Taktung der Rechenkerne bei Nvidia, kann man die Anzahl nicht direkt mit den AMD Radeon Grafikkarten (z.B. HD 5870) vergleichen.
Detaillierte Informationen zur GF104 Architektur kann man beispielsweise bei Anandtech nachlesen (über die Desktop GTX 460 - Englisch).
Leistung
Die Leistung der GeForce GTX 470M SLI ist stark abhängig von der verwendeten Software. Grundsätzlich skalieren SLI Systeme derzeit etwas besser als Crossfire Modelle von AMD. Trotzdem verdoppelt sich die Grafikleistung einer einzelnen 470M nur in der Theorie. In der Praxis spürt man die zusätzliche Grafikkarte erst bei sehr hohen Auflösungen mit Antialiasing und hohen Details. In diesen Fällen sind etwa 30% Mehrleistung bei Spielen möglich. Dadurch sollten selbst sehr anspruchsvolle Spiele in hohen Auflösungen und Detailstufe flüssig laufen. Eine Ausnahme bleibt das enorm anspruchsvolle Metro 2033 welches nur etwa 23fps liefert (GTX 480M SLI im Test ebenfalls 23 fps).
Features
Eine weitere Neuheit bei den GF104/106/108 Chips ist die Unterstützung der Bitstream Übertragung von HD Audio (Blu-Ray) per HDMI Anschluss. Wie die Radeon HD 5850, kann die GTX 470M Dolby True HD und DTS-HD per Bitstream ohne Qualitätsverlust an einen geeigneten Receiver übertragen.
Zur Dekodierung von HD Videos durch die Grafikkarte unterstützt die GTX470M PureVideo HD. Der verbaute Video Processor 4 (VP4) beherrscht das Feature Set C und kann somit MPEG-1, MPEG-2, MPEG-4 Part 2 (MPEG-4 ASP - z.B. DivX oder Xvid), VC-1/WMV9 und H.264 vollständig auf der Grafikkarte dekodieren (VLD, IDCT, Motion Compensation und Deblocking). Des Weiteren können gleichzeitig zwei Streams in Echtzeit dekodiert werden um beispielsweise Blu-Ray Picture-in-Picture umzusetzen (2x1080p lt DXVAChecker). Außerdem bezeichnet PureVideo HD die Fähigkeit der HDCP Verschlüsselung für digitale Anschlüsse.
Für generelle Berechnungen (z.B. Video Transcoding) können die Shader Cores (auch CUDA Cores genannt) durch die Schnittstellen CUDA, DirectCompute 2.1 und OpenCL angesprochen werden. Dank PhysX kann die 470M Physikberechnungen zudem auf die GPU verlagern (durch den SLI Verbund kann man auch eine Grafikkarte alleine für PhysX abstellen).
Eine Neuheit ist laut Nvidia auch die Unterstützung für 3D Vision inklusive Support für HDMI 1.4a. Somit kann man (sofern vom Notebookhersteller unterstützt) 3D Spiele, 3D Web Streaming Videos, 3D Fotos und 3D Blu-Ray Videos auf einem 3D Fernseher (per separatem 3DTV Play) oder am internen 3D Display wiedergeben.
Der Stromverbrauch der GeForce GTX 470M ist laut Gerüchten bei ungefähr 75 Watt (TDP des MXM Boards inkl. Speicher) angesiedelt und dadurch für 17” Notebooks geeignet (5870 Klasse). Da jedoch zwei 470M gleichzeitig arbeiten, benötigt das Gespann 150 Watt und kann deshalb nur in sehr großen DTR Notebooks eingesetzt werden. Im Treiber kann man jedoch auch eine Karte deaktivieren. Ohne Last kann sich der Chip im 2D Betrieb automatisch auf 50/100 MHz (Chip / Shader) bzw. 200/400 MHz im 3D Betrieb herunter takten um Strom zu sparen. Außerdem unterstützt der GF104 Optimus zum automatischen Umschalten zwischen integrierter Grafikeinheit und Nvidia GPU. Dies muss jedoch vom Notebookhersteller umgesetzt werden und kann nicht nachgerüstet werden.
Die ähnlich lautende Desktop GeForce GTX 470 basiert bereits auf den GF100 Kern und bietet 448 Shader. Selbst die Desktop GTX 460 ist durch eine höhere Anzahl an Shadern, schneller als die GTX470M. Dadurch entspricht die Desktop GTS 450 im SLI Verbund ungefähr der Leistung der GTX 470M SLI.
NVIDIA GeForce GTX 480M SLI
► remove from comparison
Die NVIDIA GeForce GTX 480M SLI ist eine High-End Grafiklösung für Laptops welche auf zwei "Fermi" Chips (GF100) basiert, der auch in den Desktop GeForce GTX 465, 470 und 480 zum Einsatz kommt. Die beiden Grafikkarten werden durch eine SLI Bridge verbunden und rendern normalerweise abwechselnd ein Bild. Dadurch kann es auch zu Microruckler kommen (ungleichmäßige Abstände zwischen zwei Bildern führen zu spürbaren Rucklern trotz flüssiger fps Raten von etwa 30 fps). Die GTX 480M SLI unterstützt DirectX 11 und braucht sehr viel Strom (2x 100 Watt für das gesamte Board inkl 2GB GDDR5) und kommt daher nur in großen und schweren DTR Notebooks zum Einsatz.
Der GF100 aka. Fermi Chip ist eine komplette Neuentwicklung von Nvidia und wird in 40nm bei TSMC gefertigt. Mit etwa 3 Milliarden Transistoren ist der Chip sehr groß geraten. Im Vergleich befinden sich in einer Desktop HD 5870 etwa 2,15 Milliarden Transistoren. Die schnellste mobile Grafikkarte, die Mobility Radeon HD 5870 basiert auf den RV870 mit "nur" 1,04 Milliarden Transistoren.
Die Geforce GTX 480M bietet jedoch deutlich weniger Shader als der GF100 theoretisch zur Verfügung stellt. Von den 512 (1-dimensionalen) Shadern des Fermi Chips sind aus Stromspargründen nur 352 aktiviert. Zur Seite stehen diesen Shadern 32 ROPs und 44 Texture Units. Auch der Speicherbus ist bei der mobilen 480M von 384 Bit auf 265 Bit abgespeckt.
Durch die deaktivierten Einheiten und wahrscheinlich selektierten Chips bleibt der Stromverbrauch der GeForce 480M auch deutlich unter den Desktop Pendants. Das komplette Package aus Grafikchip, MXM Board und 2 GB GDDR5 Speicher ist mit 100 Watt TDP spezifiziert. Dies ist zwar deutlich über den üblichen 75 Watt im Notebook-High End Bereich, jedoch brauchen alleine die 2 GB GDDR5 etwa 25 Watt.
Die Grafikleistung liegt deutlich über zwei Mobility Radeon HD 5870 im Crossfire (CF) Verbund. Dadurch kann man alle aktuellen Spiele aus 2010 in 1920x1080 und hohen Details flüssig spielen. Die meisten Spiele sind auch mit Antialiasing und maximalen Details flüssig darstellbar. In unseren Spieletests (siehe weiter unten) wurde es nur in Metro 2033 und Crysis knapp. Besonders die Tessellation Leistung der neuen GeForce Karte ist sehr gut und könnte in zukünftigen Spielen einen deutlichen Unterschied machen. Verglichen mit einer einzelnen GTX 480M, kann der SLI Verbund vor allem in hohen Auflösungen mit Antialiasing punkten. In unseren Tests war eine einzelne 480M bei aktuellen Spielen 16% (Starcraft 2) bis 48% (Far Cry 2) langsamer, wobei die meisten Spiele um die 40% langsamer liefen (siehe Vergleichs-Charts zum Ausklappen).
Wie auch die GeForce 300M Serie, bietet die Geforce GTX 480M PureVideo HD mit dem VideoProcessor 4 (VP4) und VDPAU Feaure Set C. Dadurch kann die Grafikkarte HD Videos in H.254, VC-1, MPEG-2 und MPEG-4 ASP vollständig dekodieren ohne den Prozessor zu belasten. Mittels Flash 10.1 können auch Flash Videos GPU unterstützt wiedergegeben werden.
Die Rendering Cores der Nvidia GeForce GTX 480M können dank CUDA und DirectCompute Unterstützung auch für generelle Berechnungen (z.B. das Encodieren von Videos) verwendet werden. Weiters kann man mittels PhysX die Rechenkerne für Physikberechnungen einsetzen. So kann man z.B. eine Grafikkarte dediziert für PhysX abstellen.
Im Vergleich zu Desktop Grafikkarten, ist die GeForce GTX 480M SLI vergleichbar mit einer untertakteten GeForce GTX 465M im SLI Modus (607/1200 Kerntakt).
NVIDIA GeForce GTX 470M SLI | NVIDIA GeForce GTX 480M SLI | |||||||||||||||||||||||||||||||||||||||||||||||||
GeForce GTX 400M Serie |
|
| ||||||||||||||||||||||||||||||||||||||||||||||||
Codename | N11E-GT | N11E-GTX-A3 | ||||||||||||||||||||||||||||||||||||||||||||||||
Architektur | Fermi | Fermi | ||||||||||||||||||||||||||||||||||||||||||||||||
Pipelines | 576 - unified | 704 - unified | ||||||||||||||||||||||||||||||||||||||||||||||||
Kerntakt | 535 MHz | 425 MHz | ||||||||||||||||||||||||||||||||||||||||||||||||
Shadertakt | 1070 MHz | 850 MHz | ||||||||||||||||||||||||||||||||||||||||||||||||
Speichertakt | 1250 MHz | 1200 MHz | ||||||||||||||||||||||||||||||||||||||||||||||||
Speicherbandbreite | 192 Bit | 256 Bit | ||||||||||||||||||||||||||||||||||||||||||||||||
Speichertyp | GDDR5 | GDDR5 | ||||||||||||||||||||||||||||||||||||||||||||||||
Shared Memory | nein | nein | ||||||||||||||||||||||||||||||||||||||||||||||||
API | DirectX 11, Shader 5.0 | DirectX 11, Shader 5.0 | ||||||||||||||||||||||||||||||||||||||||||||||||
Herstellungsprozess | 40 nm | 40 nm | ||||||||||||||||||||||||||||||||||||||||||||||||
Notebookgröße | groß (17" z.B.) | groß (17" z.B.) | ||||||||||||||||||||||||||||||||||||||||||||||||
Erscheinungsdatum | 01.11.2010 | 25.05.2010 | ||||||||||||||||||||||||||||||||||||||||||||||||
Max. Speichergröße | 4 GB | |||||||||||||||||||||||||||||||||||||||||||||||||
Stromverbrauch | 100 Watt | |||||||||||||||||||||||||||||||||||||||||||||||||
Transistors | 6 Billion | |||||||||||||||||||||||||||||||||||||||||||||||||
Herstellerseite | www.nvidia.com |